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RATIONALE

▪ Identifying epileptogenic zone (EZ) in 

medication-resistant epilepsy using brief 

interictal EEG remains an unresolved 

challenge.

▪ Current clinical practice requires lengthy 

monitoring (up to several weeks) of 

intracranial EEG (iEEG) to analyze ictal 

segments.

▪ This approach misses potential seizure 

onset zones (PSOZ) that could become 

active with extended observation.

▪ We hypothesize EZ regions (SOZ+PSOZ) 

contain subtle ictal signatures within short 

interictal iEEG segments.

METHODS

CONCLUSIONS

▪ Study included 159 pediatric patients from 

UCLA and Wayne State University who 

underwent chronic iEEG monitoring with 

either electrocorticogram (n=144) or 

stereotactic EEG (n=15) grid/strip followed by 

resection.

▪ Analyzed interictal iEEG recording (5-90 

minutes) by dividing it into 1-second non-

overlapping segments

▪ For each segment, created synchronization 

networks in 3 frequency bands (50-80, 80-

250, 250-300 Hz) using power-phase 

coupling between channel pairs[1].

▪ Generated feature vectors from temporal 

dynamics of the sequence of networks.

▪ Trained and tested random forest model 

using leave-one-out cross-validation to 

estimate likelihood of channels belonging to 

SOZ.

▪ Developed prediction model incorporating 

channel SOZ likelihoods and the channel 

resection status to predict postoperative 

seizure freedom probability.

RESULTS
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Figure 2: Mini-seizures frequently occur in bursts and inter-

mini-seizure interval statistics follow power law distribution.

(A) Raster plots showing the occurrences of mini-seizures over 

time for two patients, where each red line represents a 

detected mini-seizure. For both patients, mini-seizures occur 

in bursts.

(B) X-axis represents inter-mini-seizure time interval and Y-axis 

represents the frequency of that inter-mini seizure time 

interval occurring, where both axes are on a logarithmic scale. 

The plot, aggregated across 159 patients, show that inter-

mini-seizure time interval follows a power law distribution 

found in inter-seizure statistics

(C) Each dot represents a patient's mini-seizure rate at the group 

level, with a median occurrence of approximately 6 mini-

seizures per minute.

Figure 5: Network based model accurately 

predicts post-operative seizure outcome

A 10-fold cross-validation (CV) approach was 

used to validate the performance of the surgical 

outcome prediction models. 

(A) The synchronization network based model 

outputs a seizure freedom probability (Ps) for 

each patient. Each dot represents one 

patient and dots are color-coded by surgical 

outcome. For the network based model, the 

majority of patients with a successful surgical 

outcome (red dots) had Ps values greater 

than the threshold (dotted line) whereas 

patients with a failed surgical outcome 

generally had Ps values below the threshold 

(B) Box plots show distributions of each 

performance metric across the 10 CV folds. 

The network based model generalizes well 

as shown by the high mean F1 score of 0.87 

and a low variance of 0.004 across the 10 

CV folds.

(C)Four surgical outcome prediction models are 

compared in terms of 4 performance metrics. 

The synchronization network based model ( 

mean F1 score - 87%) outperforms the HFO 

based model (mean F1 score - 79%) and 

SOZ resection status based model (current 

clinical standard) (mean F1 score - 78%) on 

all the 4 performance metrics.

Figure 3: Random forest model accurately predicts SOZ 

status, with ripple band features being the most 

informative. A leave-one-out cross validation approach was 

used to validate the performance of the SOZ classification 

model. X-axis represents the 4 performance metrics and Y-

axis represents value of the performance metric averaged 

across 159 patients with error bar showing the variance. The 

model using all frequency bands generalizes well as shown 

by the high average F1 score of 0.97 and small variance in 

F1 score across 159 patients. However, when the ripple 

frequency band was dropped, the model performance 

decreased significantly to an average F1 score of 0.84 

showing the importance of ripple band in SOZ classification.

Figure 4: Short interictal iEEG segments 

may be sufficient for high confidence EZ 

identification. 

(A) Heatmap of SOZ likelihood scores for 

two patients are shown with rows 

representing the channels and columns 

representing the duration of the iEEG

epoch used to train the SOZ 

classification model. We can identify 

SOZ (overlapping with doctor’s 

annotated SOZ [dSOZ]) and PSOZ with 

high confidence from iEEG epochs with 

duration as short as 3 minutes. 

(B) SOZ likelihood score distribution when 

overlaid on the brain forms distinct 

contiguous hotspots reflecting potential 

foci of the EZ. A patient where the 

resection margin included all the foci 

became seizure-free. Conversely, a 

patient where resection margin did not 

cover all the foci, it did not become 

seizure free.
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Figure 1: Interictal mini-seizures mimics ictal network states.

C.1s1s

• Interictal hypersynchronous events, termed "mini-seizures," occurred frequently and mimicked ictal network signatures. 

• The ripple band (80-250 Hz) appeared to play a key role in generating these networks. 

• This network-based approach to interictal synchronization could potentially delineate the epileptogenic zone (EZ) from brief interictal 

iEEG data, aiding in resection planning and reducing the duration of iEEG monitoring.
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