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Abstract—Multimodal Large Language Models (MLLMs) have
demonstrated robust capabilities in recognizing everyday human
activities, yet their potential for analyzing clinically significant
involuntary movements in neurological disorders remains largely
unexplored. This pilot study evaluates the capability of MLLMs
for automated recognition of pathological movements in seizure
videos. We assessed the zero-shot performance of state-of-the-art
MLLMs on 20 ILAE-defined semiological features across 90 clin-
ical seizure recordings. MLLMs outperformed fine-tuned Con-
volutional Neural Network(CNN) and Vision Transformer(ViT)
baseline models on 13 of 18 features without task-specific
training, demonstrating particular strength in recognizing salient
postural and contextual features while struggling with subtle,
high-frequency movements. Feature-targeted signal enhancement
(facial cropping, pose estimation, audio denoising) improved
performance on 10 of 20 features. Expert evaluation showed that
94.3% of MLLM-generated explanations for correctly predicted
cases achieved ≥60% faithfulness scores, aligning with epilep-
tologist reasoning. These findings demonstrate the potential of
adapting general-purpose MLLMs for specialized clinical video
analysis through targeted preprocessing strategies, offering a
path toward interpretable, efficient diagnostic assistance.

Index Terms—Multimodal Large Language Models, Vision
Language Models, pathologic movements, seizure semiology,
signal enhancement, explainable AI

I. INTRODUCTION

Pathological movements are clinically fundamental, acting
as direct diagnostic and prognostic indicators for a wide array
of involuntary motor disorders [1]–[4]. Assessing these move-
ments typically relies on subjective clinical observation, and
manual video annotation review remains labor-intensive and
time-consuming, creating bottlenecks in clinical workflows.
Automated video analysis has made important strides in recent
years, yet existing approaches face fundamental limitations.

Most discriminative deep learning methods suffer from limited
feature coverage, targeting only high-salience manifestations
while neglecting subtle but diagnostically important cues.
They lack interpretability, offering probability scores without
explanation, a critical gap in high-stakes clinical environments
[5]. Moreover, they exhibit fragility to real-world conditions
such as occlusion, lighting variation, and background noise
[6]. These limitations stem from a core constraint: supervised
learning requires large annotated datasets for each feature, yet
expert-labeled clinical videos are scarce, and the pathological
movement vocabulary is too rich to exhaustively model with
fixed-label classifiers [7].

Recent MLLMs offer a compelling alternative paradigm
[8]–[12]. Pretrained on massive web-scale corpora, MLLMs
demonstrate open-vocabulary reasoning, responding to flexible
natural language queries rather than predicting from fixed
label sets. They generate natural language explanations that
align with clinical descriptors, providing much-needed trans-
parency. Given these capabilities, a critical question arises:
Can general-purpose MLLMs, trained primarily on everyday
voluntary actions, recognize the subtle, involuntary, and often
ambiguous manifestations of pathological movements in real-
world clinical videos?

Epileptic seizure semiology serves as an ideal representative
benchmark for this pilot investigation [13]. Seizures manifest
through a diverse, temporally evolving spectrum of features,
including motor, facial, autonomic, and vocal behaviors, con-
stituting a comprehensive test for video understanding. Semi-
ology spans from high-salience convulsions to subtle cues like
oral automatisms and eye deviation. Demonstrating efficacy in
seizure semiology would provide strong evidence for MLLMs’



potential in broader pathological movement analysis.
This pilot study presents the first systematic evaluation of

MLLMs for comprehensive seizure semiology recognition.
Our contributions are threefold:

Zero-shot MLLM Benchmarking: MLLMs outperformed
fine-tuned CNN/ViViT baselines on 13/18 features across
20 ILAE-defined semiological features in 90 seizure videos,
without task-specific training.

Feature-Targeted Signal Enhancement: Preprocessing
strategies (facial cropping, pose overlays, audio denoising)
improved performance on 10/20 features as a lightweight
alternative to fine-tuning.

Clinical Explainability Analysis: MLLMs generated clin-
ically interpretable justifications with 94.3% achieving ≥60%
faithfulness scores, aligning with neurologist reasoning pat-
terns.

II. RELATED WORK

A. Discriminative models for pathological movement under-
standing

General-purpose video understanding models have made
significant strides in action recognition. Spatiotemporal CNNs
such as SlowFast [14] employ dual-pathway architectures to
capture motion at multiple temporal resolutions, while self-
supervised approaches like VideoMAE [15] learn robust rep-
resentations through masked spatiotemporal prediction. Video-
CLIP [16] further bridges vision and language by aligning
video embeddings with text descriptions via contrastive learn-
ing. Despite their strong performance on everyday activities,
these models are trained on general-domain action datasets
(sports, daily routines) and fundamentally lack the clinical
taxonomies needed to distinguish pathological movements
from superficially similar voluntary behaviors.

Medical-specific vision models have emerged to address
domain challenges in healthcare imaging. Models like Med-
ViT [17] leverage vision transformers for tumor detection
in CT scans or lesion classification in dermatology images.
However, these architectures are designed for static pathology
recognition and cannot capture the temporal motor dynamics
that define neurological semiology. Pathological movements
such as tonic-clonic seizures unfold over seconds, requiring
joint modeling of spatial appearance and temporal evolu-
tion—capabilities absent in static imaging pipelines.

Seizure-specific detection systems represent the narrowest
tier of existing work. Prior efforts employ specialized modules
for isolated features: 3D CNNs for tonic-clonic detection
[18], accelerometry-based classifiers [19], and optical flow
segmentation [6]. While effective for their targeted symptoms,
these approaches address single features in isolation, requiring
separate models for each semiological component and yielding
fragmented, non-scalable solutions.

These limitations reflect three fundamental gaps in discrim-
inative approaches for pathological movement analysis. First,
existing models suffer from taxonomic misalignment: general-
purpose architectures cannot natively recognize the clinically-
defined vocabulary of involuntary movements without exten-

sive task-specific retraining, while medical models remain
confined to static imaging tasks. Second, the data scarcity
problem remains unresolved—supervised learning demands
large expert-annotated corpora that do not exist for rare
neurological conditions, and current self-supervised methods
have not demonstrated efficacy on pathological movement
tasks. Third, all these systems lack clinical explainability:
they output probability scores or binary classifications without
natural language justifications, a critical barrier in high-stakes
medical environments where clinicians must understand and
validate automated decisions before acting on them.

B. MLLMs for video understanding and medical applications

In contrast to discriminative models, MLLMs represent
a fundamentally different generative paradigm. By unifying
vision encoders with large language models, MLLMs such as
GPT-4V [20], Gemini [21], and open-source alternatives like
InternVL [22] and Qwen-VL [23] can process visual inputs
with natural-language questions and generate free-form natural
language descriptions. This generative capability has proven
transformative for movement recognition: models can not only
classify actions but also explain why a particular action was
identified, describe contextual details, and respond to nuanced
queries—capabilities unattainable with traditional classifiers.

Recent MLLMs have shown substantial promise primarily
in the context of daily-life activity understanding, scene dy-
namics, and fine-grained motion reasoning [24]. The medical
AI community has increasingly adopted MLLMs for clinical
tasks, demonstrating strong performance in radiology report
generation [25], dermatology diagnosis [26], and medical
visual question answering [27]. However, these applications
predominantly focus on static image analysis—interpreting
chest X-rays, identifying skin lesions, or answering questions
about anatomical structures. The temporal dimension remains
underexplored: current medical MLLMs have not been sys-
tematically evaluated on pathological movement recognition,
where clinical diagnoses depend on observing motor patterns
evolving over time.

III. METHOD

To systematically assess the potential of general-purpose
MLLMs on pathological movement, we designed a com-
parative evaluation framework. Our methodology proceeds
in two analytical stages. First, we benchmark the zero-shot
performance of off-the-shelf MLLMs against task-specific,
fine-tuned deep learning baselines. This comparison aims to
determine whether generalist models can approximate the
diagnostic accuracy of specialized supervised models without
training cost. Second, we investigate if feature-targeted sig-
nal enhancement (e.g., facial cropping, pose estimation) can
improve MLLMs zero-shot capabilities further (Fig. 1).

A. Clinical dataset curation

We collected 90 seizure videos from 29 consecutive adult
patients undergoing video-EEG monitoring at UCLA Medi-
cal Center (2019–2023). Recordings were obtained using a



Fig. 1. MLLM-based medically induced involuntary movements recognition workflow with and without signal enhancement. (The person shown is an AI-
generated virtual figure, not a real patient.)

Fig. 2. MLLM justification faithfulness score distribution across 3 semiolog-
ical features.

fixed overhead SONY EP 580 camera with a resolution of
1920 × 1080 pixels at 30 frames per second, with audio
captured via unit-installed microphones at 44.1 kHz mono. To
establish a robust ground truth, all videos were independently
annotated by three epileptologists for the presence or absence
of 20 standardized ILAE semiological motor features [28],
[29].

B. Direct pathological movement recognition

Following established practices in video-based action recog-
nition, we selected CNN [30] and Video Vision Transformer
(ViViT) [31] architectures as comparative baselines. Both
models were trained on the Kinetics dataset, which involves
human actions [32]. They have high performance, so they
provide a strong baseline for our task. Unlike MLLMs, which

we evaluate in a zero-shot manner, these traditional baselines
function as supervised classifiers and require task-specific
fine-tuning; therefore, we initialized them from pretrained
checkpoints and fine-tuned them separately for each fea-
ture using clinician-provided annotations. To ensure robust
evaluation and prevent information leakage, we employed a
patient-stratified approach rather than a simple video-level
split. Specifically, we utilized three-fold cross-validation where
patients were randomly partitioned into three distinct folds.
Decision thresholds were calibrated independently for each
feature by maximizing the F1 score on the training folds before
being applied to the held-out test fold.

We then employed state-of-the-art MLLMs to extract patho-
logical movement features from seizure videos without any
task-specific fine-tuning. Given that subtle, clinically-defined
involuntary movements can easily be confused with volun-
tary actions or normal behaviors, prompt design is critical
for accurate feature extraction. We developed prompts col-
laboratively with three epileptologists, using clear, descrip-
tive language rather than technical medical terminology to
ensure the MLLMs could accurately interpret and identify
the intended features. For instance, instead of simply asking
about ”oral automatisms,” the prompt describes the specific
observable behaviors: ”Does the patient exhibit repetitive,
stereotyped mouth or tongue movements such as chewing, lip-
smacking, or swallowing?” This approach translates clinical
expertise into precise, accessible descriptions that leverage the
MLLMs’ general understanding while guiding them toward
clinically relevant observations. Representative examples of
these expert-informed prompts are shown in Table I. Using
these specialized prompts, we deployed InternVL-3.5 38B



TABLE I
SEIZURE SEMIOLOGICAL FEATURES AND MLLM PROMPTS SAMPLES.

Feature MLLM Prompt

Oral Automatisms Does the patient exhibit repetitive, stereotyped
mouth or tongue movements such as chewing,
lip-smacking, or swallowing?

”Figure4” Arms Posture Does the patient’s posture resemble a “figure-
4” pattern, with one arm flexed and the other
extended?

Pelvic Thrusting Does the patient display repetitive, rhythmic,
anteroposterior (forward-and-backward) move-
ments of the hips?

Ictal Vocalization Does the patient make any groaning, moan-
ing, guttural sounds or do they utter stereotyped
repetitive phrases?

[22] and Qwen-VL-2.5 32B [23] to extract visual semiology
from video segments, while Audio Flamingo 3 (AF3) [33]
was utilized to detect auditory features from the full audio
recordings.

To facilitate a direct comparison, common preprocessing
and inference protocols were applied. Videos were temporally
downsampled to 2 fps to balance computational efficiency
with the capture of dynamic movements. During inference,
each seizure recording was divided into 30-second segments,
with a 5-second overlap between consecutive segments, to
ensure coverage of semiological events that may span seg-
ment boundaries. Finally, segment-level detection results for
both baselines and MLLMs were aggregated across the full
recording using an “any-yes” criterion: a given semiological
feature was marked as present if it was detected in at least
one segment of the video.

C. Feature-targeted signal enhancement

Pathological movements during seizures present inherent
challenges for automated detection: they often involve rapid
dynamics (e.g., clonic jerks), subtle manifestations (e.g., facial
twitching), and are frequently masked by clinical noise such
as background conversations or medical staff interventions
appearing in the camera view. These characteristics make
direct feature extraction from raw videos difficult for MLLMs.
Inspired by clinical practice, where neurologists instinctively
focus attention on specific body regions or filter out environ-
mental noise to better identify subtle pathological movements,
we hypothesized that targeted signal enhancement could sim-
ilarly guide MLLMs toward clinically salient features. We
grouped the 20 semiological features into 3 categories (i) facial
features (ii) limb features, (iii) audio features and introduced
category specific pre-processing enhancement procedures.

1) Facial Feature Enhancement: For facial features, such as
eye closure and facial pulling, we hypothesized that restricting
the field of view to the patient’s face would help the MLLM
focus on clinically relevant cues. We therefore applied face
detection with temporal smoothing and cropped this region
before passing the frames to the MLLM.

2) Limb Feature Enhancement: For features, such as arm
flexion, tonic, and clonic, we used a pose detector (OpenPose

[34]) to identify the coordinates of the patient’s key limb joints
in each frame. The resulting partial-skeleton was superimposed
on each frame as additional information for the MLLM.

3) Audio Feature Enhancement: Key auditory features,
such as ictal vocalizations and verbal responsiveness, are
often masked by clinical noise (e.g., alarms, conversations).
To reduce interference, we integrated a SEGAN-based speech
enhancement module as a front-end preprocessing step [35].
To further explore the role of contextual information, we
supplemented each audio clip with its corresponding transcript
extracted using OpenAI’s Whisper speech recognition model
(large) to convert the WAV files to text format [36]. The
audio was treated as the primary input and the transcript was
provided as secondary evidence.

IV. RESULTS

A. MLLMs’ zero-shot ability in detecting seizure semiological
features

The best performing MLLMs outperformed the task-specific
CNN and ViViT baselines (fine-tuned per feature) on 13/18
semiological features by F1 score (4/7 facial and 9/11 limb
& body). On facial semiology, MLLMs achieved clear F1
gains for closed eyes (best baseline F1 = 0.410 → best
MLLM F1 = 0.524), blank stare (0.583 → 0.632), and face
pulling (0.463 → 0.521), and provided a smaller but consistent
improvement on face twitching (0.531 → 0.548). In limb
& body semiology, MLLMs improved substantially on arm
straightening (0.447 → 0.582), Figure 4 (0.332 → 0.462),
and tonic events (0.506 → 0.537), while also exceeding
baselines on broader contextual or salient motor patterns such
as occur during sleep (0.733 → 0.771) and arm flexion
(0.731 → 0.800). Notably, the MLLM advantage was not uni-
form: CNN/ViViT retained higher F1 on several fine-grained
or high-frequency movement features, including eye blinking
(best baseline F1 = 0.388 vs best MLLM F1 = 0.250),
head turning (0.325 vs 0.320), oral automatisms (0.524 vs
0.479), asynchronous movement (0.690 vs 0.575), and full
body shaking (0.513 vs 0.375).

MLLM performance patterns suggest that zero-shot gener-
alization is strongest when the semiology is either contextual
(scene-level) or visually unambiguous, and weakest when
it depends on subtle, brief, or rapidly alternating motions.
For example, occur during sleep reached F1 = 0.771 at
0.822 accuracy, consistent with reliable scene understand-
ing. Similarly, distinct motor patterns such as arm flexion
achieved F1 = 0.800, and the best MLLM variants performed
competitively on several sustained motor phenomena (e.g.,
tonic F1 = 0.537). In contrast, performance degraded for
semiologies dominated by small-amplitude facial dynamics or
high-temporal-frequency movements: eye blinking remained
low even for the best MLLM configuration (F1 = 0.098),
and head turning suffered from low or unstable precision/recall
trade-offs (best MLLM F1 = 0.320 despite high accuracies
up to 0.811), indicating that these cues are often missed or
confounded. Overall, these results are consistent with a zero-



TABLE II
FACIAL FEATURES PERFORMANCE. COMPARISON OF TRADITIONAL MODELS, VLMS, AND SIGNAL ENHANCED VLMS.

Blank stare Closed eyes Eye blinking

CNN |ViViT Qwen |Intern Crop+Qwen |Crop+Intern CNN |ViViT Qwen |Intern Crop+Qwen |Crop+Intern CNN |ViViT Qwen |Intern Crop+Qwen |Crop+Intern

Accuracy 0.400 |0.411 0.544 |0.456 0.533 |0.433 0.625 |0.327 0.535 |0.267 0.477 |0.267 0.747 |0.645 0.575 |0.770 0.655 |0.805
Precision 0.413 |0.421 0.486 |0.442 0.480 |0.433 0.417 |0.263 0.361 |0.267 0.317 |0.267 0.384 |0.224 0.074 |0.000 0.192 |0.000
Recall 0.922 |0.956 0.897 |0.974 0.923 |1.000 0.514 |0.852 0.957 |1.000 0.826 |1.000 0.444 |0.556 0.143 |0.000 0.357 |0.000
F1 Score 0.569 |0.583 0.631 |0.608 0.632 |0.605 0.410 |0.393 0.524 |0.422 0.458 |0.422 0.388 |0.314 0.098 |0.000 0.250 |0.000

Face pulling Face twitching Oral automatisms

CNN |ViViT Qwen |Intern Crop+Qwen |Crop+Intern CNN |ViViT Qwen |Intern Crop+Qwen |Crop+Intern CNN |ViViT Qwen |Intern Crop+Qwen |Crop+Intern

Accuracy 0.333 |0.311 0.611 |0.411 0.478 |0.489 0.433 |0.533 0.378 |0.378 0.378 |0.378 0.456 |0.444 0.500 |0.533 0.444 |0.456
Precision 0.320 |0.309 0.312 |0.239 0.295 |0.373 0.388 |0.481 0.372 |0.378 0.378 |0.378 0.375 |0.362 0.354 |0.359 0.354 |0.333
Recall 0.926 |0.926 0.172 |0.379 0.448 |0.862 0.861 |0.699 0.941 |1.000 1.000 |1.000 0.889 |0.833 0.548 |0.452 0.742 |0.581
F1 Score 0.463 |0.453 0.222 |0.293 0.356 |0.521 0.531 |0.527 0.533 |0.548 0.548 |0.548 0.524 |0.503 0.430 |0.400 0.479 |0.424

Head turning

CNN |ViViT Qwen |Intern Crop+Qwen |Crop+Intern

Accuracy 0.667 |0.611 0.811 |0.800 0.767 |0.800
Precision 0.374 |0.270 0.571 |0.000 0.364 |0.000
Recall 0.417 |0.486 0.222 |0.000 0.222 |0.000
F1 Score 0.325 |0.317 0.320 |0.000 0.276 |0.000

TABLE III
LIMB & BODY FEATURES PERFORMANCE. COMPARISON OF TRADITIONAL MODELS, VLMS, AND SIGNAL ENHANCED VLMS.

Occur during sleep Arm flexion Arms move simultaneously

CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern

Accuracy 0.822 |0.722 0.778 |0.822 0.778 |0.738 0.611 |0.611 0.744 |0.722 0.630 |0.619 0.518 |0.519 0.578 |0.278 0.321 |0.214
Precision 0.783 |0.585 0.933 |0.730 0.741 |0.600 0.600 |0.609 0.719 |0.724 0.597 |0.592 0.289 |0.254 0.318 |0.253 0.194 |0.205
Recall 0.689 |0.475 0.424 |0.818 0.645 |1.000 0.941 |0.885 0.902 |0.824 0.881 |0.933 0.657 |0.567 0.636 |1.000 0.706 |1.000
F1 Score 0.733 |0.510 0.583 |0.771 0.690 |0.750 0.731 |0.720 0.800 |0.771 0.712 |0.724 0.400 |0.305 0.424 |0.404 0.304 |0.340

Arm straightening Figure 4 Tonic

CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern

Accuracy 0.344 |0.356 0.633 |0.644 0.580 |0.548 0.511 |0.789 0.922 |0.789 0.568 |0.298 0.444 |0.500 0.711 |0.711 0.642 |0.631
Precision 0.300 |0.316 0.442 |0.444 0.388 |0.353 0.086 |0.256 0.600 |0.211 0.135 |0.119 0.401 |0.367 0.667 |0.600 0.417 |0.474
Recall 0.933 |0.875 0.852 |0.741 0.826 |0.783 0.567 |0.700 0.375 |0.500 0.625 |1.000 0.511 |0.847 0.207 |0.310 0.185 |0.621
F1 Score 0.447 |0.442 0.582 |0.556 0.528 |0.486 0.126 |0.332 0.462 |0.296 0.222 |0.213 0.321 |0.506 0.316 |0.409 0.537 |0.537

Clonic Limb automatisms Asynchronous movement

CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern

Accuracy 0.6 |0.778 0.667 |0.700 0.531 |0.548 0.678 |0.300 0.356 |0.322 0.395 |0.310 0.678 |0.700 0.622 |0.656 0.531 |0.524
Precision 0.293 |0.587 0.290 |0.333 0.205 |0.231 0.367 |0.183 0.224 |0.230 0.254 |0.256 0.579 |0.665 0.621 |0.656 0.433 |0.308
Recall 0.808 |0.408 0.529 |0.588 0.533 |0.529 0.315 |0.546 0.714 |0.810 0.750 |1.000 0.861 |0.710 0.439 |0.512 0.382 |0.114
F1 Score 0.421 |0.409 0.375 |0.426 0.296 |0.321 0.316 |0.274 0.341 |0.358 0.380 |0.408 0.690 |0.674 0.514 |0.575 0.406 |0.167

Pelvic thrusting Full body shaking

CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern CNN |ViViT Qwen |Intern Pose+Qwen |Pose+Intern

Accuracy 0.644 |0.589 0.778 |0.756 0.432 |0.607 0.598 |0.528 0.644 |0.556 0.395 |0.405
Precision 0.312 |0.189 0.353 |0.370 0.218 |0.235 0.410 |0.310 0.318 |0.300 0.224 |0.242
Recall 0.733 |0.467 0.400 |0.667 0.800 |0.533 0.783 |0.733 0.292 |0.500 0.765 |0.833
F1 Score 0.423 |0.261 0.375 |0.476 0.343 |0.327 0.513 |0.412 0.304 |0.375 0.347 |0.375

shot MLLM regime that is effective for coarse contextual and
sustained motor signatures.

B. Effect of feature-targeted signal enhancement

Feature-targeted pre-processing proved useful, though not
universally effective, in boosting MLLMs zero-shot perfor-
mance. As shown in Tables II, III, and IV, enhancements
improved for 10 out of the 20 semiological features. The infor-
mation added by preprocessing acts like a domain-specific at-
tention mechanism, directing models toward clinically salient
cues otherwise masked by distractors.

Facial semiological features showed most gains, and in-
cluded enhanced recognition of blank stare, blinking, face
pulling, twitching, oral automatisms, and sleep-related events,
though sometimes with reduced precision (e.g., blinking).
Pose estimation offered a strong abstraction layer: for tonic
movements, InternVL-3.5 38B’s F1 rose from 0.409 to 0.537,
and limb automatisms improved consistently across VLMs.

For audio, SEGAN-based denoising alone provided little
benefit, likely because generative filtering altered seizure-
specific sounds. By contrast, pairing transcripts with audio



TABLE IV
AUDIO FEATURES PERFORMANCE. COMPARISON OF ALM(AF3) AND SIGNAL ENHANCEMENT WITH ALM.

Verbal responsiveness Ictal vocalization

AF3 Segan + AF3 ASR + AF3 AF3 Segan + AF3 ASR + AF3

Accuracy 0.434 0.321 0.245 0.765 0.581 0.744
Precision 0.468 0.375 0.431 0.850 0.654 0.759
Recall 0.361 0.291 0.327 0.708 0.500 0.830
F1 Score 0.380 0.286 0.193 0.773 0.567 0.793

TABLE V
MLLM GENERATED SEMIOLOGICAL FEATURE JUSTIFICATION SAMPLES

WITH FAITHFULNESS SCORE.

Feature Justification Score

Oral Automatisms The patient is observed holding and inter-
acting with a tablet, conversing with the
nurse, and raising arms to make gestures
across multiple video segments; none of these
actions involve repetitive, stereotyped mouth
or tongue movements indicative of oral au-
tomatisms.

4

Oral Automatisms The patient in the video doesn’t exhibit oral
automatisms.

2

Arm flexion The patient does not flex their arms at the
elbows throughout the video segments, as
they are consistently holding and interacting
with a laptop.

5

helped detect ictal vocalizations, slightly raising F1 (0.77 →
0.79) through improved recall. However, for verbal respon-
siveness, extra text reduced precision and F1, as the model
sometimes misattributed background speech to the patient.

In summary, while targeted enhancements boosted recog-
nition of several visual and auditory features, they also in-
troduced risks, false positives, loss of context, or confusion,
highlighting the need for further strengthening feature-specific
preprocessing methodologies introduced in this paper.

C. MLLMs explainability on seizure semiology

Beyond predicting the presence or absence of semiological
features, MLLMs can generate free-form natural language
justifications describing the visual and auditory cues that
support their decisions. This capability is particularly relevant
in epilepsy care, where clinicians routinely rely on narrative
interpretations of behaviors to characterize seizure type and
infer likely seizure onset networks. Table V highlights rep-
resentative explanations for multiple semiological categories,
illustrating that modern MLLMs can produce descriptions that
resemble clinical phrasing used in EMU reports.

To quantitatively assess explanation quality, we conducted a
structured evaluation focusing on three representative features:
arm flexion, oral automatisms, and tonic movements. For each
feature, expert epileptologists evaluated MLLM-generated jus-
tifications from correctly predicted samples, including all true
positive cases and an equal number of randomly sampled
true negative cases, using a faithfulness score ranging from

1 to 5, where each score level represents incrementally higher
correctness: 1 (20%), 2 (40%), 3 (60%), 4 (80%), and 5
(100%). Higher scores reflect justifications that are more
specific, evidence-grounded, and clinically accurate in their
description of observable features.

Figure 2 summarizes the faithfulness score distributions.
Overall, MLLMs provided reliable and clinically interpretable
explanations, with 94.3% justifications scoring ≥3 (60% cor-
rectness or higher). However, explanation quality varied by
feature type. Salient motor behaviors (arm flexion) predomi-
nantly received scores of 4-5 (median 4.5), while oral automa-
tisms (median 3.9) and tonic (median 4) showed more scores in
the 3-4 range. This disparity reflects the inherent difficulty of
describing subtle facial movements compared to clear postural
patterns. These findings confirm that MLLMs can provide
clinically valuable explanations that support clinician-in-the-
loop review, particularly for prominent motor features.

V. DISCUSSION AND CONCLUDING REMARKS

This study demonstrates that general-purpose MLLMs can
effectively recognize pathological movements in seizure semi-
ology without task-specific training. Our key findings are
threefold: First, zero-shot MLLMs outperformed fine-tuned
CNN and ViViT baselines on 13 of 18 semiological features,
achieving superior F1 scores despite requiring no domain-
specific training. Second, Feature-targeted signal enhancement
further improved performance on 10 of 20 features, offering
a computationally efficient alternative to model fine-tuning.
Techniques like pose estimation and facial cropping act as
domain-specific attention mechanisms, guiding MLLMs to-
ward clinically salient cues. Third, MLLMs provide clinically
valuable explainability through natural language justifications
that align with neurologist reasoning, with 94.3% explanations
scoring ≥ 60% faithfulness. This interpretability is critical
for high-stakes clinical deployment, addressing a fundamental
limitation of traditional discriminative models that only output
probability scores.

The limitations of our work remain apparent. Firstly, the
zero-shot accuracy for many subtle or complex features is
not yet at a clinical-grade level. Secondly, our dataset, while
clinically authentic, is from a single center, which may limit
the generalizability of our findings. Future work should focus
on two key areas: (1) Domain-specific fine-tuning of MLLMs
on larger, more diverse multi-center seizure video datasets to
improve their grasp of nuanced clinical cues. (2) Exploring



more sophisticated methods for multimodal fusion methods,
together with adaptive attention allocation mechanisms, to
further enhance model accuracy and robustness.

MLLM-based systems could serve as intelligent screening
assistants, automatically analyzing clinical videos and generat-
ing interpretable summaries of pathological movements. This
approach significantly accelerates diagnostic workflows while
maintaining transparency, establishing a practical pathway
toward interpretable clinical AI.
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