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ABSTRACT
Recent advancements in Multimodal Large Language

Models (MLLMs) have demonstrated strong performance
in recognizing voluntary human actions, yet their appli-
cation to clinically significant involuntary movements,
particularly in the context of neurological disorders, re-
mains underexplored. This paper evaluates the zero-shot
capabilities of MLLMs to identify and interpret 20 dis-
tinct behavioral features across 90 clinical seizure videos,
and further examines the effect of feature targeted signal
enhancement on model performance. The MLLM showed
promising results in recognizing clear postural and gaze-
related features and provided human-aligned natural lan-
guage justifications for its predictions, enhancing model
explainability, but its performance declined for complex
motor events like tonic-clonic activity and subtle man-
ifestations such as oral automatisms. Feature targeted
signal enhancement led to performance improvements
in 10 out of the 20 features. These findings highlight
the potential of adapting general-purpose MLLMs for
specialized clinical applications through targeted signal
enhancement strategies.

Index Terms— Multimodal Large Language Mod-
els, Vision Language Models, involuntary movements,
seizure semiology, signal enhancement

1. INTRODUCTION

Recent advances in Vision Language Models (VLMSs) like
CLIP [1], SwinBERT [2], VLTinT [3], ODMO [4], along-
side Audio Language Models (ALMs) [5], have greatly
improved machine learning (ML) systems’ ability to rec-
ognize and describe voluntary human actions through
spatiotemporal and semantic understanding. However,
their application to involuntary movements, particularly
those arising from medical conditions, remains limited.
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While many involuntary movements arise from diverse
physiological and pathological origins, like asterixis in
hepatic encephalopathy [6], tremors in thyrotoxicosis and
drug-induced syndromes [7], neuropsychiatric manifes-
tations of autoimmune diseases [8], hiccups or stridor
from psychiatric or infectious causes [9, [10]. Seizures,
with their stereotyped, temporally evolving semiologi-
cal features—Ilike automatisms, ictal vocalizations, head
turning, tonic and clonic movements provides critical in-
sights into seizure localization and classification|[IT] [12].
Yet, most ML models address these features in isola-
tion and lack holistic, interpretable frameworks. Prior
works use specialized modules for specific semiological
components (e.g., 3D CNNs for tonic-clonic detection
[13], accelerometry-based models [14], optical flow seg-
mentation [I5]), resulting in fragmented and non-scalable
solutions. Although explainable AI techniques have been
applied to seizure electroencephalography(EEG) signal
[16, [17], few models unify audio-visual temporal reasoning
with interpretability.

To address these gaps, we propose a Multimodal Large
Language Models (MLLMs) framework that processes
video and audio inputs to identify and interpret 20 semi-
ological features, without any targeted fine-tuning (zero-
shot capabilities), from 90 seizure videos recorded in an
Epilepsy Monitoring Unit (EMU). In addition, we also
demonstrate that feature-targeted signal enhancement
significantly boosts the zero-shot capabilities of MLLMs.
Our approach illustrates the potential of MLLMSs in under-
standing and explaining complex involuntary behaviors
in context of seizures, laying the groundwork for future
fine-tuning and signal optimization.

2. METHOD

Our methodology can be categorized into two sequential
stages: in the first stage we evaluate zero-shot perfor-
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Fig. 1. MLLM-based feature extraction workflow with
and without signal enhancement. (The person shown is
an Al-generated virtual figure, not a real patient.)

mance of MLLMs on detecting and interpreting semiolog-
ical features from raw seizure videos and in the second
stage we determine if feature targeted signal processing
can enhance MLLMs zero-shot capabilities.

2.1. Clinical dataset

We analyzed 90 video-recorded seizure events from 29
consecutive patients (aged >18 years) who underwent
video-EEG monitoring at the UCLA Medical Center be-
tween 2019 and 2023. Recordings were obtained using a
fixed overhead SONY EP 580 camera with a resolution
of 1920 x 1080 pixels at 30 frames per second, with au-
dio captured via unit-installed microphones at 44.1 kHz
mono. Each recording included pre-ictal, ictal, and post-
ictal phases of varying durations, with an average total
length of approximately three minutes. All videos were
independently annotated by three epileptologists for the
presence or absence of 20 seizure semiological features,
identified by the International League Against Epilepsy
(ILAE) as essential for the systematic classification and
clinical interpretation of seizures [I8], [19].

2.2. Direct information extraction via prompting

The first phase of our experiment focused on direct infor-
mation extraction from seizure recordings using state-of-
the-art Multimodal Large Language Models (MLLMs),
without any task-specific fine-tuning. This process relied
on carefully designed prompts, developed collaboratively
by three epileptologists based on their clinical expertise.
Some representative prompts are shown in Table [T}

Table 1. Sample seizure semiological features and corre-
sponding MLLM prompts.

Feature Prompt to MLLM

Does the patient exhibit repeti-
tive, stereotyped mouth or tongue
movements such as chewing, lip-
smacking, or swallowing?

Does the patient display repetitive,
rhythmic, anteroposterior (forward-
and-backward) movements of the
hips?

Does the patient make any groan-
ing, moaning, guttural sounds or
do they utter stereotyped repetitive
phrases?

Oral Automatisms

Pelvic Thrusting

Ictal Vocalization

Each seizure recording was divided into 30-second seg-
ments, with a 5-second overlap between consecutive seg-
ments, to ensure coverage of semiological events that may
span segment boundaries. For visual features extraction,
we prompted state-of-the-art (SOTA) VLMs, specifically
InternVL-3.5 38B [20] and Qwen-VL-2.5 [21I] with the
epileptologist designed prompts to extract visual semio-
logical features from each video segment. Similarly for
auditory feature extraction, we prompted Audio Flamingo
3 (AF3) to extract features like verbal responsiveness and
ictal vocalization from the entire audio recording. The
segment level extraction results of the VLMs were then
aggregated across all segments of a recording using an
any-yes criterion: a given semiological feature was marked
as present if it was detected in at least one segment. This
approach enabled robust detection of features while main-
taining temporal sensitivity to localized seizure events.

2.3. Feature targeted signal enhancement

We grouped the 20 semiological features into three cate-
gories (i) facial features (ii) limb features and (iii) audio
features and introduced category specific pre-processing
enhancement procedures.

2.8.1. Fuacial Feature Enhancement

For facial features, such as eye closure and facial pulling,
we hypothesized that restricting the field of view to the
patient’s face would help the MLLM focus on clinically
relevant cues. We therefore applied face detection with
temporal smoothing and cropped this region before pass-
ing the frames to the MLLM (Fig. 1).



2.8.2. Limb Feature Enhancement

For features, such as arm flexion, tonic, and clonic, we
used a pose detector (OpenPose [22]) to identify the
coordinates of the patient’s key limb joints in each frame.
The resulting partial-skeleton was superimposed on each
frame as additional information for the MLLM (Fig. 1).

2.8.3. Audio Feature Enhancement

Key auditory features, such as ictal vocalizations and
verbal responsiveness are often masked by clinical noise
(e.g., alarms, conversations). To reduce interference, we
integrated a SEGAN-based speech enhancement module
as a front-end preprocessing step [23]. To further explore
the role of contextual information, we supplemented each
audio clip with its corresponding transcript extracted
using OpenAl’s Whisper speech recognition model (large)
to convert the WAV files to text format [24]. The SEGAN-
preprocessed audio was treated as the primary input and
the transcript was provided as a secondary evidence (Fig.

1).

3. RESULTS

3.1. MLLMs zero-shot ability in detecting seizure
semiological features

MLLMs performed well on high-level contextual fea-
tures—for example, detecting whether a seizure occurred
during sleep yielded high accuracy and F1 scores (Accu-
racy = 0.82,F1 = 0.77), reflecting strong scene under-
standing. They also showed promising performance on dis-
tinct motor and vocal events like arm flexion (F'1 = 0.77)
and ictal vocalization (F'1 = 0.77), indicating an ability
to recognize clear, unambiguous patterns. However, per-
formance dropped sharply for features requiring nuanced
interpretation of subtle or rapid muscle movements. Low
F1 scores for eye blinking (0.1), head turning (0.32), and
face pulling (0.29) highlight this gap (see Table [2). These
features are often brief, small-scale posing challenges for
models trained on general-domain data. Even with the
aforementioned challenges best performing MLLMs out-
performed a naive bayes classifier on all three feature
categories: facial features (60% 1), limb features (92% 1),
audio features (43% 1).

3.2. MLLMs capabilities in explainable seizure
semiology analysis

MLLMs not only demonstrate the capacity to identify
semiological features in seizure videos but also provide
accompanying natural language justifications for their
predictions. Table [3] presents representative examples
of model-generated explanations for various semiological

Table 2. Performance metrics with and without sig-
nal enhancement. Each entry is reported as x|y (x =
Qwen-VL-2.5, y = InternVL-3.5 38B). “Base” indicates
no enhancement; “Crop / Pose / Segan / Text” are en-
hancement strategies. A 1 marks features where at least

one model improves with enhancement.
Blank stare 1

Closed eyes Eye blinking 1

Base Crop Base Crop Base Crop
Accuracy 0.544 [0.456 0.533 [0.433 0.535 0.267  0.477 [0.267  0.575 [0.770  0.655 |0.805
Precision  0.486 |0.442 0.480 [0.433 0.361 [0.267  0.317 |0.267  0.074 [0.000  0.192 |0.000
Recall 0.897 [0.974  0.923 [1.000  0.957 [1.000  0.826 [1.000 ~ 0.143 [0.000  0.357 |0.000
F1 Score 0.631 |0.608 0.632 |0.605 0.524 0422 0.458 |0.422  0.098 [0.000  0.250 |0.000

Face pulling 1 Face twitching 1 Oral automatisms 1

Base Crop Base Crop Base Crop
Accuracy 0.611 [0.411 0478 |0.489  0.378 [0.378  0.378 [0.378  0.500 [0.533  0.444 [0.456
Precision  0.312 [0.239  0.295 0.373  0.372 [0.378 0.378 |0.378 0.354 [0.359  0.354 0.333
Recall 0172 [0.379  0.448 |0.862  0.941 |1.000 1.000 [1.000 0.548 0.452 0.742 |0.581
F1 Score 0.222(0.203  0.356 [0.521  0.533 [0.548 0.548 [0.548 0.430 [0.400 0.479 [0.424

Occur during sleep 1 Head turning Arm flexion

Base Pose Base Crop Base Pose
Accuracy 0.778 |0.822 0.778 10.738 0.811 [0.800  0.767 |0.800  0.744 [0.722  0.630 [0.619
Precision  0.933 |0.730 0.741 10.600 0.571 [0.000  0.364 [0.000  0.719 [0.724  0.597 0.592
Recall 0.424 [0.818 0.645 [1.000 0.222 [0.000  0.222 [0.000  0.902 [0.824  0.881 [0.933
F1 Score 0.583 |0.771 0.690 |0.750 0.320 [0.000  0.276 |0.000  0.800 [0.771  0.712 ]0.724

Arms move simultaneously Arm straightening Figure 4

Base Pose Base Pose Base Pose
Accuracy 0.578 |0.278 0.321 [0.214 0.633 [0.644  0.580 [0.548  0.922 0.789  0.568 0.298
Precision  0.318 |0.253 0.194 [0.205 0.442 0.444  0.388 |0.353  0.600 [0.211  0.135 [0.119
Recall 0.636 [1.000 0.706 [1.000 0.852 [0.741  0.826 |0.783  0.375 [0.500 0.625 [1.000
F1 Score  0.424 |0.404 0.304 [0.340 0.582 [0.556  0.528 [0.486  0.462 [0.296  0.222]0.213

Tonic T Clonic Limb automatisms 1

Base Pose Base Pose Base Pose
Accuracy 0.711 [0.711 0.642 [0.631 0.667 [0.700  0.531 [0.548  0.356 [0.322  0.395 [0.310
Precision  0.667 |0.600 0.417 (0.474 0.290 [0.333  0.205 [0.231  0.224 [0.230  0.254 |0.256
Recall 0.207 {0.310 0.185 |0.621 0.529 [0.588  0.533 0.529 0.714 [0.810 0.750 |1.000
F1 Score  0.316 |0.409 0.256 0.537 0.375 [0.426  0.296 [0.321  0.341 [0.358  0.380 [0.408

Asynchronous movement Pelvic thrusting Full body shaking 1

Base Pose Base Pose Base Pose
Accuracy  0.622 |0.656 0.531 |0.524 0.778 [0.756  0.432 |0.607  0.644 [0.556  0.395 [0.405
Precision  0.621 |0.656 0.433 [0.308 0.353 [0.370  0.218 [0.235  0.318 [0.300  0.224 ]0.242
Recall 0.439 10.512 0.382 (0.114 0.400 [0.667  0.800 [0.533  0.292 [0.500 0.765 |0.833

F1 Score 0.514 |0.575 0.406 [0.167 0.3750.476  0.343 |0.327  0.304 [0.375  0.347 |0.375
Verbal responsiveness Ictal vocalization 1
Buse Segan, Text Base Segan Text
Accuracy 0.434 0.321 0.245 0.765 0.581 0.744
Precision 0.468 0.375 0.431 0.850 0.654 0.759
Recall 0.361 0.291 0.327 0.708 0.500 0.830
F1 Score 0.380 0.286 0.193 0.773 0.567 0.793

features. These justifications often align with clinical de-
scriptors used by epileptologists, suggesting that MLLMs
can approximate human-like reasoning in describing com-
plex visual and auditory phenomena.

3.3. Effect of feature targeted signal enhancement
on MLLMs zero-shot ability

Feature-targeted pre-processing proved useful, though
not universally effective, in boosting MLLMs zero-shot
performance. As shown in Table [2] enhancements im-
proved for 10 out of the 20 semiological features. The
information added by preprocessing acts like a domain-
specific attention mechanism, directing models toward
clinically salient cues otherwise masked by distractors.
Facial semiological features showed most gains. and in-



Table 3. Sample justifications provided by MLLM in
support of semiological feature detection

Feature Justification

The patient in the video exhibits
repetitive, stereotyped mouth move-
ments, including chewing and lip-
smacking actions.

The patient is seen lying on their
back on a hospital bed, wearing a
white gown with black polka dots.
The video shows the patient moving
their hips in a repetitive, rhythmic,
and anteroposterior manner, indi-
cating forward-and-backward move-
ments.

The patient makes groaning, moan-
ing, and guttural sounds, which are
indicative of physical discomfort or
pain.

Oral Automatisms

Pelvic Thrusting

Ictal Vocalization

cluded enhanced recognition of blank stare, blinking, face
pulling, twitching, oral automatisms, and sleep-related
events, though sometimes with reduced precision (e.g.,
blinking). Pose estimation offered a strong abstraction
layer: for tonic movements, InternVIL-3.5 38B’s F1 rose
from 0.409 to 0.537, and limb automatisms improved
consistently across VLMs.

For audio, SEGAN-based denoising alone provided
little benefit, likely because generative filtering altered
seizure-specific sounds. By contrast, pairing transcripts
with audio helped detect ictal vocalizations, slightly rais-
ing F1 (0.77 — 0.79) through improved recall. However,
for verbal responsiveness, extra text reduced precision and
F1, as the model sometimes misattributed background
speech to the patient.

In summary, while targeted enhancements boosted
recognition of several visual and auditory features, they
also introduced risks, false positives, loss of context, or
confusion, highlighting the need for further strengthening
feature-specific preprocessing methodologies introduced
in this paper.

4. DISCUSSION AND CONCLUDING
REMARKS

This study demonstrates that modern MLLMs can be
effectively repurposed for the complex task of seizure semi-
ology recognition from clinical videos, even in a zero-shot
setting. Our findings suggest a new paradigm where the
vast world knowledge embedded in these general-purpose
models serves as a powerful foundation for specialized
medical analysis, potentially reducing the need for build-

ing bespoke models from scratch.

The principal finding is twofold. First, out-of-the-
box MLLMs can identify a range of clinically relevant
features and, crucially, explain their reasoning in human-
readable language. This explainability is paramount in
high-stakes clinical environments. Second, we have shown
that targeted signal enhancement, framed as a proxy for
domain-specific attention, can significantly boost perfor-
mance. This approach offers a practical, computationally
efficient alternative to full model fine-tuning, guiding a
general model’s focus without altering its internal weights.
The success of techniques like pose estimation for tonic
movements highlights the value of abstracting complex
visual data into a more structured format for the MLLM
to interpret.

While open-source MLLMs outperformed naive Bayes
by large margins, showing average gains of 60%, 92%, and
43% for facial, limb, and audio features, it was infeasible
to benchmark them against alternative non-MLLM video-
understanding models. Existing efforts target only lim-
ited features (e.g., tonic, clonic, blinking) and to the best
of our knowledge lack public code bases[I3]. Moreover,
building comprehensive baselines would require large-
scale, expert-annotated seizure video datasets that are
not currently available. We are collaborating with mul-
tiple institutions to create such a resource, though once
available, fine-tuning and augmenting MLLMs remains
a more powerful strategy, as they can jointly learn all
features and provide explainable justifications.

The limitations of our work are quite apparent. Firstly,
the zero-shot accuracy for many subtle or complex fea-
tures is not yet at a clinical-grade level. Secondly, our
dataset, while clinically authentic, is from a single cen-
ter, which may limit the generalizability of our findings.
Future work should focus on two key areas: (1) Domain-
specific fine-tuning of MLLMs on larger, more diverse
multi-center seizure video datasets to improve their grasp
of nuanced clinical cues. (2) Exploring more sophisti-
cated methods for multimodal fusion methods, together
with adaptive attention allocation mechanisms, to further
enhance model accuracy and robustness.

The implications for clinical Al are significant. Such a
system could function as an intelligent screening tool for
neurologists, automatically analyzing lengthy video-EEG
recordings, flagging segments of interest, and providing
preliminary textual summaries of observed semiological
features. This could dramatically expedite the diagnostic
workflow in Epilepsy Monitoring Units. This study lays
the groundwork for a new approach to medical video
analysis, combining the power of large-scale pre-trained
models with domain-specific signal processing to build
transparent and effective clinical support tools.
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