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ABSTRACT
Human brain assembloids offer a powerful platform for mod-
eling neurological diseases, yet comprehensive methods for
analyzing their complex network dynamics are lacking. Here,
we developed a time-resolved network analysis pipeline that
extracts quantitative biomarkers from two-photon calcium
imaging, enabling the detection of subtle differences between
disease and control models. We applied this pipeline to
assembloids containing a pathogenic MAPT p.R406W vari-
ant—clinically associated with an Alzheimer’s disease-like
phenotype—and their isogenic controls. Our analysis re-
vealed that mutant networks exhibit significantly increased
degree variance and clustering. This indicates a “hub-like”,
interconnected topology prone to hypersynchrony, a finding
that parallels the network hyperexcitability and seizure-like
features observed in in-vivo models of Alzheimer’s disease.
Furthermore, a Random Forest classifier trained on these dy-
namic network features distinguished between diseased and
control states with high accuracy (F1 score = 0.90). These
results establish that dynamic network properties can serve
as potent biomarkers for identifying pathological states in as-
sembloid models, providing a quantitative framework to in-
vestigate disease mechanisms and potential therapeutic inter-
ventions.

Index Terms— Brain organoids, Calcium imaging, Net-
work methods, Neuronal dynamics

1. INTRODUCTION

Human brain organoids, and their fused “assembloid” coun-
terparts, provide a revolutionary platform for studying neu-
rological disease. By recapitulating human-specific aspects
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of neurodevelopment—including layered cytoarchitecture,
diverse cell populations, and complex neuronal activity
[1, 2, 3, 4]—these reproducible and scalable 3D models
overcome many limitations of traditional animal systems for
investigating the functional properties of human neuronal net-
works. While prior work has demonstrated that these models
exhibit rich, spontaneous network activity, the field has lacked
standardized, comprehensive, and high-throughput analysis
methods needed to fully leverage this technology. This an-
alytical gap is particularly challenging because a primary
application of organoids is modeling genetic diseases [5, 6],
often by direct comparison to healthy, isogenic controls [3, 4].
Without robust and standardized tools, it remains difficult to
quantify the subtle yet critical alterations in network dynam-
ics that define a disease state or to compare these findings
across studies.

To address this critical gap, we developed a comprehen-
sive, time-resolved network analysis pipeline that defines
quantitative functional biomarkers of network activity. Our
objective was not only to develop a classifier that could dis-
tinguish between disease and control states, but also to iden-
tify the salient features—the specific quantitative biomark-
ers—that drive this distinction. By pinpointing these core
features, our approach provides critical insight into the fun-
damental biological mechanisms of network dysfunction,
creating a powerful new tool to guide subsequent cellular-
level studies and therapeutic development.

2. METHODS: FUNCTIONAL BIOMARKERS FROM
ASSEMBLOIDS

2.1. Organoids to time-resolved neuronal activity data

Assembloid generation. We generated cerebral organoids
from two human induced pluripotent stem cell lines: one
derived from a patient with a pathogenic MAPT p.R406W
variant (mutant), which produces a clinical phenotype resem-



Fig. 1. Experimental and analytical workflow. (Top)
Organoids were directed towards distinct regional fates start-
ing at 18 DIV and fused into assembloids at 56 DIV. (Middle)
Following viral transduction with a genetically encoded cal-
cium indicator, two-photon calcium imaging was performed
at 120 DIV. Individual neuronal activity and inferred spike
trains were extracted using an automated pipeline. (Bottom)
This activity was used to construct time-resolved correlation
networks, from which 32 dynamic features were extracted for
group-level classification of mutant and control assembloids.

bling Alzheimer’s Disease, and a matched, CRISPR/Cas9-
corrected isogenic control line (control) [7]. Using estab-
lished protocols [3, 4], we directed organoids from each line
toward either a hippocampal (Hc) or ganglionic eminence
(GE) fate. At 56 days in vitro (DIV), we fused Hc and GE
organoids from each line to create mutant Hc+GE assem-
bloids and control Hc+GE assembloids. We introduced a
genetically encoded calcium indicator GCaMP7f at ∼106
DIV via transduction with an AAV-syn-jGCaMP7f virus (Ad-
dgene, 104488-AAV1), and then recorded neuronal network
activity from 8 mutant and 5 control assembloids using 2PCI
at ∼120 DIV. Ultimately, 175 100-second recordings from
these 13 assembloids, which exhibited sufficient neuronal
activity for robust network analysis, were included in the
subsequent analysis.

2PCI to individual neuron time-series. We extracted ac-
tivity from regions of interest (i.e. putative neurons) in 2PCI
recordings using a custom MATLAB script that leverages

the CaImAn toolbox [8]. CaImAn implements a probabilis-
tic decomposition model based on constrained non-negative
matrix factorization and Bayesian inference to perform si-
multaneous source extraction and spike deconvolution. The
final processed data consisted of inferred raster plots of ac-
tion potentials (spikes) from each neuron that were used in
subsequent network construction.

2.2. Neuronal activity to dynamic correlation networks

Let

X = {xi[t] ∈ R | i ∈ {1, . . . , n}, t ∈ {1, . . . , T} }

denote the neuron traces (number of spikes) over T = 250
uniformly sampled points, where i corresponds to the ith neu-
ron and t corresponds to sample index where one sample cor-
responds to ∆t = 400ms. We use a sliding window of
length W = 25 with stride S = 1, resulting in 226 win-
dowed data vectors for each neuron. For window k starting at
tk = 1+ (k− 1)S, the windowed data vector for neuron i is:
x
(k)
i =

[
xi[tk], xi[tk + 1], . . . , xi[tk +W − 1]

]⊤ ∈ RW .
Correlation network for kth window. We initially construct
an undirected, weighted, fully connected network

G
(k)
Comp = (V,A(k)), V = {1, . . . , n}, A(k) = [a

(k)
ij ],

where A(k) is the weighted adjacency matrix for window k.
Edge weights, a(k)ij , are the sample Pearson correlation coef-
ficients between the kth windowed data vectors for neurons
i and j: a(k)ij = ρ

x
(k)
i ,x

(k)
j

. For each k, several a(k)ij could be
negligible, thus we use a percentile-threshold, τ , and only re-
tain edges in the top τ -percentile. Next, the Giant Connected
Component (GCC) of this network is computed and labeled
G

(k)
τ .

Correlation network dynamics. By sweeping across all k,
we get 226 samples from the underlying network dynamics:

{G(1)
τ , G(2)

τ , · · · , G(226)
τ },

where τ is the threshold percentile for edges, the value of
which is determined via a grid search as described later.

2.3. Capturing temporal neuronal network dynamics us-
ing graph-theoretic measures

Network structure descriptors for the kth window. For
network snapshot G

(k)
τ we compute eight local and global

descriptors that summarize the network structure (see [9]
for definitions of these well-known metrics): (i) normal-
ized size of G

(k)
τ ; (ii) clustering coefficient; (iii) mean of

the node-degree distribution of G
(k)
τ ; (iv) variance of the

node-degree distribution of G(k)
τ ; (v) diameter of G(k)

τ ; (vi)
algebraic connectivity (Fiedler eigenvalue) of G(k)

τ ; (vii) sum



Network Connectivity and Calcium Imaging Across Time

A. Low Degree Variance
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B. Medium Degree Variance

Each node on the graph corresponds to an identified ROI from the 2P Imaging 

C. High Degree Variance

Fig. 2. Correlation network connectivity (τ = 25) and cal-
cium imaging across time. Each node in the correlation net-
work graph represents a region of interest (putative neuron)
extracted from two-photon calcium imaging data. The cal-
cium imaging frame displayed corresponds to the midpoint
of the temporal window used to construct the network. Panels
A–C depict correlation network states with low, medium, and
high GCC degree variance, respectively. The lower panels
show the temporal evolution of the GCC degree variance, with
the highlighted window (blue) indicating the interval used for
graph construction.

of edge weights of G(k)
τ ; (viii) sum of Euclidean inter-neuron

distances within G
(k)
τ , computed from the recorded neuron

coordinates.
Summarizing temporal network structure descriptors.
Let y

(k)
m be the m-th descriptor measured on G

(k)
τ (m =

1, . . . , 8). To summarize temporal evolution across k =
1, . . . ,K, we compute the first four (sample) moments for
each scalar graph statistic: mean µy , variance σ2

y , skewness
γy , and kurtosis κy . Concatenating the four moments across
the eight descriptors yields a fixed 32-dimensional signature
per assembloid, z =

[
µ1, σ

2
1 , γ1, κ1, . . . , µ8, σ

2
8 , γ8, κ8

]⊤ ∈
R32, which preserves typical levels and temporal variabil-
ity or asymmetry of the evolving correlation network and is
suitable for downstream classification.

3. ASSEMBLOID CLASSIFICATION USING
TEMPORAL NEURONAL NETWORK DYNAMICS

Various neurophysiological properties of the assembloid
models, including their temporal neuronal network dynam-
ics, may encode disease-state-related information, and could
provide critical insights into network-level dysfunction in
neurological disorders.

3.1. Classification model, performance metrics and fea-
ture selection

Classification model. We train a Random Forest (RF) clas-
sifier with hyperparameter optimization using grid search and
F1-score maximization. To address class imbalance, we apply
differential class weighting with a 2:1 ratio, assigning twice
the weight to control samples (label 0) compared to mutant
samples (label 1) to compensate for the smaller number of
controls in our dataset. RF provides a robust, nonparamet-
ric approach for tabular features while yielding interpretable
feature importance scores that directly correspond to network
statistics and their temporal dynamics.
Decision rule and performance metrics. From predicted
probabilities p̂(y=1 | z) we assign
ŷ = 1{p̂(y = 1 | z) ≥ 0.51} . We report accuracy, preci-
sion, recall, F1, and ROC–AUC, where ROC–AUC summa-
rizes ranking quality across thresholds. We also log per-group
outcomes (13 organoid groups) to quantify cohort-level con-
sistency.
Feature selection for organoid classification. From the ini-
tial 32 graph-theoretic statistics (8 metrics × 4 moments each),
we first perform a grid search over τ and find that τ = 25
provides the best performance; thus only the edges in the top
quartile are retained. Next, we perform feature selection us-
ing stratified 10-fold cross-validation. Through importance
ranking across folds, we identify the most informative fea-
tures for organoid classification. These were found to be the
summary statistics of the GCC node-degree variance and tran-
sitivity/clustering coefficient.

3.2. Classification results and insights

Mutant organoids exhibit higher propensity for hypersyn-
chrony: “hub” like structures and higher interconnected-
ness. Our analysis of network topology revealed that assem-
bloids with the MAPT p.R406W variant exhibit significant
alterations consistent with a hyperexcitable state. As shown
in Fig. 3A, mutant networks had a significantly higher mean
for node degree variance (top panel), indicating the formation
of highly connected “hub” neurons that can drive network-
wide synchronization. Concurrently, these mutant networks
showed a significant increase in the mean clustering coeffi-
cient (bottom panel), reflecting a greater degree of local inter-
connectedness where neighboring neurons are more likely to
be connected to each other. These characteristics—the emer-
gence of hubs and tightly clustered local circuits—are hall-
marks of a network prone to hypersynchrony. This result
is congruent with prior in vivo models of Alzheimer’s Dis-
ease [10, 11], where impaired inhibitory interneuron func-
tion led to aberrant excitatory activity and epileptiform dis-
charges. The hub-like, highly clustered topology of our mu-
tant organoids may therefore be an in vitro manifestation of
these imbalanced networks, in which a failure of inhibition
drives pathological synchronization.



Hypersynchrony dynamics descriptors are sufficient for
distinguishing between mutant and control organoids. The
RF predictive model demonstrated strong reliability in clas-
sifying organoid state across multiple recordings, correctly
identifying the majority of cases for each organoid, as shown
in Fig. 3B (top panel). This consistency indicates that the
most informative network features (identified through feature
selection), GCC node-degree variance and clustering coeffi-
cient, are robust and generalize well across repeated measure-
ments. The robustness of these learned features is further val-
idated by the model’s performance metrics, particularly the
high mean F1 score (0.90) and its very low variance (0.001)
across 10-fold cross-validation, as shown in Fig. 3B (bottom
panel) highlighting both accuracy and stability in predictions.

B. Best Performing Random Forest ModelA. Features With Most Significant Group Difference

0 1 2 3 4 5 6 7 8 9 10 11 12
Group (Aa = Control | Aa = Mutant)

Fig. 3. The Random forest (RF) model trained with the
summary statistics of GCC node-degree variance and Clus-
tering coefficient performed the best on held-out test set (for
details see Section 3.1 on Feature selection for organoid clas-
sification). All the plots shown are for the best performing
RF model (A): Among the four summary statistics of GCC
node-degree variance (top panel) and Clustering coefficient
(bottom panel), mean had the most significant difference at a
group level. (B): (top panel) Model’s predictive accuracy on a
per-organoid basis, showing high number of correct classifi-
cations (green bars) across most organoids, and few incorrect
predictions (red bars) mostly coming from control organoids.
(bottom panel) Prediction model generalizes well across the
10-folds as shown by the high mean and low variance in the
performance metrics distribution across the folds.

4. DISCUSSION

Human brain organoids offer a powerful, scalable platform
for modeling the complex cellular and network-level dis-
turbances of genetic neurological disorders. While their
potential is clear, the field has lacked comprehensive analyt-

ical pipelines that can translate the rich, dynamic data from
these models into robust, interpretable biomarkers of dis-
ease. This work addresses that critical gap by introducing
a comprehensive, time-resolved network analysis pipeline
and demonstrating its efficacy in a tauopathy model. Our
central finding is that dynamic graph-theoretic measures de-
rived from two-photon calcium imaging can serve as a potent
quantitative biomarker, reliably distinguishing MAPT-mutant
assembloids from their isogenic controls. The success of
our RF classifier, driven by only a few key network features,
underscores the power of this approach. More importantly,
the nature of these distinguishing features—specifically, the
mean of the node degree variance and the clustering coeffi-
cient—provides deeper insight into the underlying pathophys-
iology. Our analysis revealed that mutant networks develop a
topology characterized by the emergence of highly connected
“hub” neurons and an increase in local interconnectedness.
These are hallmarks of a network prone to hypersynchrony, a
finding that parallels in vivo studies [10, 11] where impaired
inhibitory function in models of Alzheimer’s Disease leads
to epileptiform activity. The network topology we identified
may, therefore, represent an in vitro correlate of a seizure-
prone state, driven by the failure of inhibitory control that
results in pathological synchronization. However, further
studies are needed to specifically evaluate this.

The strength of this pipeline lies not only in its classifica-
tory power but in its ability to generate testable, biologically
relevant hypotheses. The observation of a “hub-like” network
structure points toward specific cellular mechanisms that can
now be explored, such as the potential vulnerability or dys-
function of inhibitory interneurons, which are known to be
critical for regulating network synchrony. While this study is
limited to a single MAPT variant and an in vitro system, our
approach provides a versatile framework for studying a wide
range of neurological disorders. Future investigation using
this assembloid platform is necessary to define the cellular
basis of this network dysfunction and to evaluate the specific
role of interneuron pathology.

5. CONCLUSION

We have developed and validated a novel pipeline for time-
resolved network analysis of brain organoid models. Our ap-
proach successfully extracts a robust functional biomarker ca-
pable of distinguishing a pathogenic state from a healthy con-
trol with high accuracy. Crucially, the features that define this
biomarker provide direct insight into the nature of the network
dysfunction, bridging the gap between high-level dynamics
and underlying cellular mechanisms. This work establishes
a powerful methodology for dissecting the complex network
alterations in human neurological diseases and for identifying
quantitative targets for future cellular studies and therapeutic
development.
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